COMP 551: Applied Machine Learning
Project 3: Image Classification
Team: ZSM

Zeyad Saleh
Computer Engineering
McGill University
(260556530)

zeyad.saleh@mail.mcgill.ca

Matthew Cooke
Computer Science
McGill University

(260553365)

matthew.cooke2@mail.mcgill.ca

Sacha Perry-Fagant
Physics & Computer Scien
McGill University
(260571927)

sacha.perry-fagant@mail.mc

I. INTRODUCTION

Image classification is currently a popular topic in Ma-
chine Learning. In this project, the task is to extract infor-
mation about a two digit operation from an image, where
the operator (addition or multiplication) and the operands
(digits O to 9) are hand written on top of a non-uniform
background image. This project differs from the simple
image classification task as it adds an extra semantic layer
on top of it, which is subject to further interpretation. To
classify one example correctly, all three symbols of the image
must be classified correctly. The authors decided to tackle
this problem by creating a pipeline through which the data
undergoes a preprocessing stage where the background is
removed and the symbols are isolated, followed by training
a machine learning model on a modified EMNIST dataset,
which contains only the twelve symbols of interest (0-9, a
and A, m and M) and their rotated versions, and finally a
prediction and semantic labeling stage from which a final
result is computed.

II. RELATED WORK

KNN was chosen as there have been previous applica-
tions of KNN to optical character recognition. In particular,
there exists a program called Gamera uses KNN to classify
characters as well as optical music recognition, OMR. This
program uses KNN with a list of features as well as user
classified data to classify a given set. With similar results to
Gamera as a goal, KNN was chosen as a classifier [1]. A
classic example of an application of CNNs is the application
to image classification. Because of this, many tutorials use
a CNN to classify the MNIST test set. Since CNN is such
a typical example of image classification, it makes sense to
use it for this project. One such example uses Keras to create
a CNN and analyze the MNIST. [5]

III. PROBLEM REPRESENTATION

The dataset provided is composed of a training set of
50,000 images and their corresponding classes, as well as a
test set of 1000 images which are subject for classification.
Each line of the training and the test sets is composed of
4096 comma-separated entries, and represents a 64 by 64

pixel gray-scale image. Each one of these entries represents
a pixel of the image, and can have a value between 0 and
255 that represents the intensity of light of the corresponding
pixel, where O represents black and 255 represents white
pixels (see Fig. 1).

Fig. 1. Image before and after background removal

L

] o s

w5 W B [

Fig. 2. The Segmented Images

Since the use of the existing EMNIST datasets for training
was interesting for this project, it was important to under-
stand their representation too. These datasets are formed by
a collection of 28 by 28 pixel gray-scale images, where each
pixel can take a float value between 0 and 1 and represents
a single digit or letter. Thus the symbols of the images in
the test set need to be identified, and each symbol needs
reformatted to match the EMNIST data format.

IV. ALGORITHMS AND IMPLEMENTATION

Since the data has to go through several steps, it was
decided to create a pipeline through which the data goes
through several stages to be transformed from a raw input
to a meaningful output. The following sections describe the
different stages of the pipeline.

A. Preprocessing

The first step in preprocessing was to remove the back-
ground image. For this task, multiple methods were explored.

1) Brightness Threshold: Since the symbols are usually
brighter than the background, the simplest way to remove
the background is to set a brightness threshold under which
the brightness of the pixels is set to zero. After trying several
ranges of thresholds visually, we found that some thresholds
do not apply to different images, since their global brightness
might be less than the others.

2) Average Filter: Another simple approach to removing
the background is to truncate the brightness of all pixels
whose brightness is smaller than the average brightness of
the entire image. However a single pass of the average filter
does not perform well as it leaves a big portion of bright
pixels belonging to the background on. Multiple passes of
the average filter however gives good results as can be seen
in Fig. 1 with 3 passes. It is important to note that in order
to improve the performance of the average filter on each
iteration, the average brightness is calculated based only on
the bright pixels of the image.

3) KNN: It would have been interesting to explore a KNN
approach to the remove the background image, however, due
to time constraints that was not achieved.

B. Symbol Extraction

The next step was to group the remaining pixels into 3
symbols, and get their images. This is tackled first by getting
the centers of the symbols, then cropping the image with
certain dimensions around it. One difficultly with this step
was the fact that sometimes one symbol was disconnected
from itself, or two symbols are connected together.

1) Connected Components: One way to get the symbols
is by tracing the connected components and calculating their
center of mass. This was done using the openCV library, but
it caused many problems since a big portion of the symbols
in the dataset were connected to each other, resulting in the
detection of only one or two symbols.

C. K-Means clustering

K-means was used to get around this problem by separat-
ing them into 3 symbols to be classified. However, the issue
with this method, is the fact that the classes for the individual
symbols of the training data is not known. The training data
only provides the result of operation applied to the two digits.
In order to get around this, a modified EMNIST dataset was
used to train the classifiers. Since this set has individual digits
and letters labeled, it was simple to incorporate it into the
classifiers. The modified EMNIST dataset is created from
the original MNIST dataset, but with an addition of rotated
versions of the symbol as well (30 and -30 degrees). In order
to make this data compatible with the EMNIST data, the size
of each symbol had to be converted to match the EMNIST
standard. Since rather than classifying operators, individual
symbols are being classified, the number of classes is reduced
from 40 to only 12 (10 digits and 2 operators).

D. Classifiers

1) Logistic Regression: Logistic regression is a classifier
that takes in multiple feature input, with each feature set
to either 0 or 1, and has outputs encoded as a discrete
set of classes. In the case of image classification, once the
images were binarized, it was simple to transform the image
into one long array of pixels with values of either O or 1.
The logistic regression function from the Python module
scikit-learn was used. This module uses L2 regularization, or
least squares error, as its loss function. When classifying the
individual digits, an abysmal result of 6% correct examples
was achieved. However, this was an expected result. As the
logistic regression classifies each pixel as a feature, it focuses
on whether or not a pixel in a certain area is black or white.
If a letter is slightly rotated or offset, logistic regression will
not be able to recognize it as the same symbol.

2) Feed Forward Neural Network: A feed forward neural
network was used in order to classify the segmented figures
produced during our preprocessing steps. Using these fig-
ures, 3 per original image, the figures could be classified
upon an MNIST letters and digits trained classifier. This
classifier is first fitted to an MNIST dataset for digit and
letter recognition. Once trained the network will predict the
sub-figures from the preprocessed data. The network would
learn through back-propagation. Although functional, this
approach is not optimal. The training and predicting steps
using this network are slow for large datasets. The network
used has a topology of 784 input nodes, 784 hidden nodes
(1 layer), and 12 output nodes representing the digits O
through 9 and the letters "M/m” and “A/a”. The output
of the network is not one value, but an array. This array
contains 12 entries, one for each symbol class, containing
the probability the symbol belongs to each of the classes.
The symbol is assigned to the class with the maximum value.
Once the three symbols are acquired, it must be checked that
a valid operation exists between them. There must be exactly
2 digits and one operator. If this result is not achieved,
the next most probable values are considered until a valid
operation exists. The operation is applied and the result is
saved. The neural network successfully classified only about
11% of correct examples. Therefore, the network was then
applied to the original given images, to predict an output
from 40 classes. This method provided even worse results, at
about 5%. Although better than both logistic regression and
our K nearest neighbours approaches, this method provided
disappointing accuracy. We also attempted to run the network
with more, smaller, hidden layers, however the accuracy
remained poor, between 5% and 10%.

3) K Nearest Neighbors: The K nearest neighbors clas-
sifier, or KNN, works by classifying an example based on
the distance to the closest k labeled examples. The 'K’ in
KNN signifies the number of neighbors we consider. The
k neighbors are considered, and the class that comprises the
most neighbors is what the example will be classified as. The
KNN function of OpenCV was used. [4] Firstly, as a test, the
kNN was trained using the entire image. Taking this route

provided a very inaccurate classifier, the results generated
having only a 8 % accuracy. Next, the individuals symbols
were used to classify the data. This time, the MNIST dataset
was used as the training data. The number of neighbors
parameter, k, was chosen to be 5. For each example, the
labels of each of the symbols were found. If there were
not exactly two digits and one operators, the neighbors were
searched until the combination with the least total distance
was found. In the case of three digits, if an operator was not
found, then the operator was randomly chosen to be either A
or M. The operator was then applied to the two digits and the
result was stored. Unfortunately, this method also gave us a
poor accuracy of 10%. Similar results to logistic regression
were expected and achieved. Like logistic regression, each
pixel is considered as a feature and rotations or displacements
are not understood by the KNN. Unlike Gamera, there were
no encoded character features to look at. If these features
had been incorporated, the KNN might have done better.

E. Convolutional Neural Network

A convolutional neural network, or CNN, is a type of
neural network. What makes a CNN different from a regular
NN, is the fact that it allows some connections to go
backwards. One advantage of using a CNN is the fact that, in
the case of image classification, translations of images don’t
faze the CNN as much as other classifiers. Our network has
the following topology. We start with a 28*28 input layer
accepting our symbols, 3 per image. We feed this into another
convolutional layer that feeds into 2 dense layers. Finally,
this is fed into an output layer with 12 nodes: representing
digits 0-9 and letters a,m.

V. TESTING AND VALIDATION

Our testing showed that when predicting digits, our CNN
worked well. However, once letters were introduced, our
accuracy fell from 90% to 30%. This can be explained by
the fact that it only takes one wrong prediction out of the 3
symbols to result in an incorrect classification.

Accuracy
KNN 10.3
LR 6.4
CNN 32.8
NN 10.8

Fig. 3. The accuracy of each classifier.

VI. CONCLUSION

As one can see in table 3, most of the classifiers had
inaccurate results, with the CNN outperforming them all.
As expected, logistic regression and KNN performed equally
poorly, having no way of deciphering information about the
overall shapes of the digits. The CNN, having the ability to
ignore these translations, did three times better than any of
the other classifiers. As one can see in figure 4, the CNN does
three times better than any of the other classifiers. The NN
scores second place in our list of classifiers, but surprisingly,

it didn’t outperform the lower two by a lot. It is possible
that not enough layers and nodes were used to make a big
improvement over the other two classifiers. KNN did perform
slightly better then logistic regression. Unlike KNN, logistic
regression has no sense of neighbors. If there were cases
where the wrong number of operators and digits were found,
it had no choice but to randomly assign, since it had no
information about the other possible classes.

@ Neural Network .
0.30 Logistic Regression
& KHNN
035 & (NN
E 0.20
-
[¥}
£
0.15
L
0.10 .
Classifiers

Fig. 4. A plot showing the accuracy of each method

A. Improvements

There was a lot of training data available for this project
but it was disregarded in favour of the MNIST dataset.
Although this dataset is well classified and contains many
examples, its format is different than that of the symbols
requiring classification. It is possible that comparisons with
the given training set would have increased accuracy of the
classifiers. As mentioned previously, the KNN was inspired
by a KNN that used specific character feature selection.
Having similar feature selection, rather than using only the
pixel data, might have improved the data. This is also true
for logistic regression. Having a neural network with an
increased number of layers and nodes could have found
more informative features to classify the data. The CNN was
only run with 10 epochs, but running with 100 might have
provided better results.

VII. STATEMENT OF CONTRIBUTION

We hereby state that all the work presented in this report
is that of the authors. Matthew Cooke implemented the feed
forward neural network. Sacha Perry-Fagant implemented
the Logistic Regression as well as the k nearest neighbors
algorithm. Zeyad Saleh implemented the preprocessing as
well as the Convolutional Neural Network.

REFERENCES

[1] The Gamera Project. (n.d.). Retrieved from
http://gamera.informatik.hsnr.de/

[2] Werbos, P. J. (1994). The roots of backpropagation: from ordered
derivatives to neural networks and political forecasting. New York:
J. Wiley & Sons.

[3] Differences between L1 and L2 as Loss Function and Regularization.
(2013, December). Retrieved from http://www.chioka.in/differences-
between-11-and-12-as-loss-function-and-regularization/

[4] Mordvintsev, Alexander, and Abid K. OCR of Hand-Written Data
using kNN. OpenCV, 2013,
opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_ml
/py_knn/py_knn_opencv/py_knn_opencv.html

[5] J. B. (2016, June). Handwritten Digit Recognition using
Convolutional Neural Networks in Python with Keras. Retrieved from
https://machinelearningmastery.com/handwritten-digit-recognition-
using-convolutional-neural-networks-python-keras/

